

Ingegneria delle Telecomunicazioni

Satellite Communications

9. Balancing Resources – Accurate Link Budget

Marco Luise marco.luise@unipi.it

Link Budget 1 – Received power

$$P_R = P_T \frac{G_T G_R}{\left(4\pi h / \lambda\right)^2}$$

$$P_{R}|_{dBW} = P_{T}|_{dBW} + G_{T}|_{dB} - L|_{dB} + G_{R}|_{dB} = P_{T}|_{dBW} + G_{T}|_{dB} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_{R}|_{dB}$$

- TX Antenna gain (max): G_{τ} = 12 dB (dBi)
- EIRP = $P_{T (dB)}$ + $G_{T (dB)}$ = 26 dBW (about 500 W equivalent)
- Satellite altitude: r=20,200 km
- Free-Space Loss @ f_0 =1575 MHz: L=(4 πh)²/ λ^2 = (4 $\pi h f_c$)² / c²= 182 dB
- RX antenna gain (smartphone): G_R =-1 dBi
- Received Power at RX antenna output: $C=EIRP-L + G_R = -157$ dBW=0.2 fW (2. 10^{-4} pW)=0.1 μV in 50 Ω

GPS satellite

Link Budget 2 - Noise Computation

- P_R is also called C (carrier power)
- k_B = Boltzmann's constant
- *T_n*=RX Noise Temperature
- T_b , R_b = bit time, bit rate

$$\frac{E_b}{N_0} = \frac{C T_b}{k_B T_n} = \frac{C}{R_b k_B T_n}$$

$$C \Big|_{dBW} = EIRP_{dBW} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_R\Big|_{dB}$$

$$\frac{C}{N_0} \Big|_{dBW} = EIRP_{dBW} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_R\Big|_{dB} - 10\log(k_B T_n)$$

$$\frac{E_b}{N_0} \bigg|_{dB} = EIRP_{dBW} - 20\log\left(\frac{4\pi h}{\lambda}\right) + \frac{G_R}{T_n} \bigg|_{dB/K} - 10\log(k_B R_b)$$

TX

Propagation

RX

Bit-rate

Refining the Link Budget

Propagation Impairments

- Adds-up on top of free-space loss and is variable from day to day and within the day
- Diminish the received RF power

Transmitter/Receiver Losses

- Coming form connectors, waveguides, between the HPA/LNA and the antenna
- Diminishes the nominal TX/RX useful power

Noise

- A relevant component coming form the antenna looking at the sky has to be taken into account
- The noise figure of the receiver also comes into play
- More than just thermal noise...

Noise Figure & Noise Temperature

$$N_{DUT} = Gk_BT_{DUT} = GN_{in}(F-1)$$

where the internal noise is referred to the device *input*. Conventionally, the input-referred internal noise is expressed via the reference temperature T_{ref} 290 K:

$$N_{in} = k_B T_{ref} \implies N_{DUT} = G k_B T_{ref} (F - 1) \implies T_{DUT} = T_{ref} (F - 1)$$

and the relation between the Noise Figure F and the Equivalent Noise Temperature T_{DUT} is

$$F = 1 + \frac{T_{DUT}}{T_{ref}}$$

For cascaded devices,

$$F_{tot} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_N - 1}{G_1 G_2 \dots G_{N-1}} \quad \Rightarrow \quad T_{tot} = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + \dots + \frac{T_N}{G_1 G_2 \dots G_{N-1}}$$

The second secon

System Noise Components

Receiver Noise

Element	Cumulative NF [dB] @ Output			
OMT	0.41			
LNA	2.71			
AMP	2.73			
IR Filter	2.74			
Mixer	2.80			
IF Filter	2.82			
IF Amp 1	2.87			
IF Amp 2	2.88			
Total (NF)	2.88			

$$F_{rec}$$
=2.88 dB=1.94

therefore
$$T_{rec}$$
 =(F-1) T_{ref} =272.6 K

The *antenna* is also generating noise – so what is missing here is the ANTENNA NOISE T_a to find the overall system noise temperature T_{tot} (aka T_{svs})

The same of the sa

Including the Antenna Noise

- The antenna is directly connected to the receiver input (LNA)
- The noise temperature of the receiver is referred to the same Reference Point
- Therefore, the two temperatures just add up to give the *total system noise* temperature

$$T_{tot} = T_a + T_{rec}$$

What is left to do is, finding the noise temperature of the antenna

The state of the s

Earth Antenna Pickng up Noise

Atmosphere

Terrain

Antenna Noise Temperature

It is caused by the radiation of the various celestial bodies within the antenna beamwidth, causing an equivalent point-by-point noise temperature T_h :

$$T_a = \frac{1}{4\pi} \iint T_b(\theta, \varphi) G(\theta, \varphi) \sin(\theta) d\theta d\varphi$$

- AT THE SATELLITE, the contribution comes mainly for the Earth and depends on the areas within the beamwidth (coverage) of the antenna
- Ground (warmer) radiates more than Oceans (cooler)
- Maps of radiating noise are available for accurate computations
- In general, a safe value of T_a =290 K can be used.

SAT Antenna Earth-Induced noise @ Ku band (ESA/Eutelsat)

Antenna Noise on the Ground 1/2

Radiation of the sky and from the ground both contribute, the latter coming from secondary lobes of the radiation pattern. For low frequencies, radiation form the sky is low

Antenna Noise on the Ground 2/2

- A safe value of 50 K can be used.
- There may also be a noise increase during heavy rain events due to the emission of the rain drops at their own temperature of 270 K.

Antenna Temperature Summary

C-band: 50–60 K K_u-, K_a-band: 60–80 K

(a)

TYPICAL ANTENNA TEMPERATURE VALUES (NO RAIN)

Rain Fade Level (dB)	1	3	10	20	30
Noise Tempeature (°K)	56	135	243	267	270

(b)

ADDITIONAL RADIO NOISE CAUSED BY RAIN

Sample Noise Computation

(Further) Considerations on the link budget

$$P_R = P_T \frac{G_T G_R}{\left(4\pi h / \lambda\right)^2}$$

• The received power appears to decrease for decreasing wavelength. BUT, let us assume that the **size** (i.e., the physical area) of the antennas on board the satellite and at the ground are constrained (as is often the case), and re-formulate the equation introducing the antenna equivalent areas $A = \lambda^2 G/(4\pi)$

$$P_R = P_T \frac{A_T A_R}{(\lambda h)^2}$$

- It is clearly seen that the received power (hence the link budget) increases decreasing
 the wavelength this is because, for the same physical size, the gain of the antennas
 increases for a reduced wavelength
- The noise is on the contrary largely independent of the wavelength.... This is yet another reason for the run towards higher frequencies

To the link budget again

$$\left. \frac{E_b}{N_0} \right|_{dB} = \underbrace{EIRP_{dBW}} - 20 \log \left(\frac{4\pi h}{\lambda} \right) - L_{prop} + \frac{G_R}{T_{sys}} \right|_{dB/K} - 10 \log(k_B R_b) - M$$

- Sample computation, EUTELSAT KONNECT, (16 degrees E), Ka-band data connectivity
 - Downlink: EIRP 52 dBW, 20 GHz, G/T=19 dB/K
 - Uplink: G_T =44 dBi, 30 GHz, G/T=? (assume same C/N_0 as in the uplink)
 - Link Budget Spreadsheet
- Sample computation, GPS satellite with antenna and receiver noise

The state of the s

E2E Forward-Link Budget

F.O.

E2E Forward-Link Budget

$SNR_{up} = \frac{C_{R,u}}{N_u} = \frac{C_{T,u} / L_u}{N_u}$ $N_u = kT_{sys,u}B$

Transponder Gain G

$$SNR_{down} = \frac{C_{R,d}}{N_d} = \frac{C_{T,d} / L_d}{N_d}$$

$$N_d = kT_{sys,d}B$$

The state of the s

E2E Forward-Link Budget

$$C_{R,e2e} = \frac{C_{T,u}}{L_d} = \frac{C_{T,u}G}{L_uL_d}$$

$$N_{R,e2e} = \frac{GN_u}{L_d} + N_d$$

E2E Forward-Link Budget

Transponder Gain G

$$\left(\frac{N}{C}\right)_{e2e} = \frac{N_{R,e2e}}{C_{R,e2e}} = \frac{\frac{GN_u}{L_d} + N_d}{\frac{C_{T,u}G}{L_uL_d}} = \frac{N_u}{C_{T,u}/L_u} + \frac{N_d}{\frac{C_{T,u}G}{L_uL_d}} = \frac{N_u}{C_{T,u}/L_u} + \frac{N_d}{C_{T,u}/L_u} + \frac{N_d}{C_{T,u}/L_u} + \frac{N_d}{C_{T,u}/L_u} + \frac{N_d}{C_{T,u}/L_u} + \frac{N_d}{C_{T,u}/L_u} = \left(\frac{N}{C}\right)_u + \left(\frac{N}{C}\right)_u$$

$$\frac{1}{\left(C/N\right)_{e2e}} = \frac{1}{\left(C/N\right)_{u}} + \frac{1}{\left(C/N\right)_{d}}$$

E2E Link Budget - Considerations

- In a direct-to-the-user network, the Forward Link (from the network to the end-user) is user-limited, meaning that C/N for the user downlink is much smaller than the C/N of the feeder uplink (featuring the high-gain ground-station antenna). In this case, the large C/N value in the "harmonic mean" formula can be neglected and $(C/N)_{e2e} \approx (C/N)_d$.
- Same considerations apply to the *Return Link* (from the end-user to the network): it is usually (uplink) *user-limited* so that $(C/N)_{e2e} \approx (C/N)_u$
- The remarks above are not true for a *trunk communications point-to-point* scenario where the two ends are two ground stations with similar-quality antennas and receivers.